Introducing Rank Data Analysis with Arkham Horror Data

Introduction

Last week I analyzed player rankings of the Arkham Horror LCG classes. This week I explain what I did in the data analysis. As I mentioned, this is the first time that I attempted inference with rank data, and I discovered how rich the subject is. A lot of the tools for the analysis I had to write myself, so you now have the code I didn’t have access to when I started.

Continue reading

Comparing the Classes of Arkham Horror; Why Survivors Need Work

Introduction

This blog post was prompted by this meme posted in the Arkham Horror: The Card Game Facebook group:

Arkham Horror meme

Continue reading

Learn Basic Python and scikit-learn Machine Learning Hands-On with My Course: Training Your Systems with Python Statistical Modelling

This post is actually months late, but like with my last video course announcement, it’s better late than never. And besides, of my video courses, I had the most fun writing this one.

Continue reading

Who Survives Riddler Nation?

Introduction

Last week, I published an article on learning to fight in the Battle for Riddler Nation. Here’s a refresher of the rules:

In a distant, war-torn land, there are 10 castles. There are two warlords: you and your archenemy. Each castle has its own strategic value for a would-be conqueror. Specifically, the castles are worth 1, 2, 3, …, 9, and 10 victory points. You and your enemy each have 100 soldiers to distribute, any way you like, to fight at any of the 10 castles. Whoever sends more soldiers to a given castle conquers that castle and wins its victory points. If you each send the same number of troops, you split the points. You don’t know what distribution of forces your enemy has chosen until the battles begin. Whoever wins the most points wins the war.

Continue reading